Search results for "Modular element"
showing 1 items of 1 documents
Intersection subgroups of complex hyperplane arrangements
2000
Abstract Let A be a central arrangement of hyperplanes in C n , let M( A ) be the complement of A , and let L ( A ) be the intersection lattice of A . For X in L ( A ) we set A X ={H∈ A : H⫆X} , and A /X={H/X: H∈ A X } , and A X ={H∩X: H∈ A \ A X } . We exhibit natural embeddings of M( A X ) in M( A ) that give rise to monomorphisms from π 1 (M( A X )) to π 1 (M( A )) . We call the images of these monomorphisms intersection subgroups of type X and prove that they form a conjugacy class of subgroups of π 1 (M( A )) . Recall that X in L ( A ) is modular if X+Y is an element of L ( A ) for all Y in L ( A ) . We call X in L ( A ) supersolvable if there exists a chain 0⫅X 1 ⫅⋯⫅X d =X in L ( A ) …